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TURBULENT HEAT AND MASS TRANSFER IN SMOOTH PIPESt 
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Abstract-h analysis of turbulent heat and mass transfer is based on velocity and temperature 
defect laws in the central portion, combined with a sublayer analysis with velocity as the independent 
variable. The calculations are in satisfactory agreement with experiments over the entire Prandtl (or 
Schmidt) number range from 1O-s to 10s, except for some discordant results of Frank-Kamenetskii 

which are generally ignored. 
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NOMENCLATURE 

velocity; 
friction velocity; 
temperature, relative to wall; 

friction temperature = - s g ; 
rzl^ 

” ‘” distance from pipe axis; 
radius of pipe; 
total Prandtl number [equation (9)] ; 
kinematic viscosity (molecular); 
thermal conductivity; 
eddy viscosity (kinematic); 
eddy conductivity for heat; 
constant in relation for eddy viscosity 
in sublayer [equation (6)] ; 
a dimensionless variable in sublayer 
analysis [equation (17a)] ; 
a function [equation (17b)]; 
Prandtl constant, 4.07. 

Subscripts 
av, average; 
b. av, bulk average; 
6, value at edge of sublayer. 

Superscripts 
c, in central core; 
S, in sublayer. 

Dimensionless groups 
Nu, Nusselt number = ch Re * Pr; 
ch, heat-transfer coefficient (Stanton num- 

ber) ; 

t This work was supported by NSF Grant 24534. 

Cf, friction coefficient = (u*/&)~; 
Pr, Prandtl number = V/K; 

Pe, Peclet number = Prandtl number x 
Reynolds number; 

Re, Reynolds number; 
Re*, Reynolds number based on friction 

velocity and eddy viscosity. 

INTRODUCTION 

IN A PREVIOUS paper [l] the author presented an 
analysis of turbulent heat and mass transfer in 
smooth pipes, which was applicable in principle 
over the entire Prandtl (or Schmidt) number 
range. $ However, a simplifying assumption 
about the laminar sublayer apparently intro- 
duced an appreciable error at large Pr, though 
there was some conflict in the available experi- 
mental data [2, 31. 

This paper presents an improvement in the 
analysis based on Spalding’s [4] recent treat- 
ment of the laminar sublayer using velocity 
as the independent variable. The previous 
analysis remains valid in the liquid metal 
range, but complete agreement is now obtained 
with Deissler’s [2] high Prandtl number results. 
There is also some improvement in the moderate 
Prandtl number range. 

BASIC ASSUMPTIONS 

The present analysis is based on similarity 

-___ 
$ Both reference 1 and this paper are written in terms 

of temperature profiles, Prandtl number, and heat 
transfer. However, the results can be applied to mass 
transfer by replacing temperature by concentration and 
Prandtl number and Schmidt number. 
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assumptions which could, in principle, be 
tested by experiment. However, at present the 
available data are inadequate. It should be 
emphasized that the agreement between the 
calculated heat-transfer coefficients with experi- 
ment is not a satisfactory verification of the 
assumptions, since many other analyses based on 
different assumptionsalsogiv~satisfactory results, 

The basic assumptions are that: 

(1) there is a central core in which the velocity 
and temperature distributions obey defect 
laws, and 

(2) there are temperature and velocity sub- 
layers of equal thickness. 

There is a reasonable amount of evidence for 
the defect laws. The velocity defect law is, of 
course, an established conventional theory, 
but not the temperature defect law. While the 
temperature defect law can be supported by 
dimensional arguments analogous to those for 
the velocity defect law and experimental results 
cited in [l] and recent measurements in air by 
Johnk and Hanratty f8] support this assumption, 
there are no good measurements in the liquid 
metal range. As the idea of a temperature defect 
law leads to temperature profiles at very small 
Pr which differ markedly from those predicted 
by conventional theories 191, further studies are 
in order. 

There is no firm experimental basis for the 
treatment of the sublayer at present, and the 
assumption of equal thickness of the thermal 
and velocity sublayer at all Prandtl numbers 
cannot be considered inherently plausible. 
Because of the difficulty in making measure- 
ments close to a wall, data on the sublayer is 
very limited. Lin [lo] has done some very 
interesting work with an interferometric tech- 
nique which showed that the concentration 
profile began to deviate from a straight line 
when U/u* was about 1. However, the measure- 
ments were for Reynolds numbers below 
13 x 103, and it would be desirable to have 
similar data over a large range of Re. 

ANALYSIS 
From the definitions (see Nomenclature) 

This is based on an average temperature defined 
by 

T = 3 Td(r/ro)2 (24 
0 

rather than on the bulk average defined by 

1 

f u Td(r/rd2 

12W 

on which most of the experimental data is 
based. The correction factor which is evaluated 
in Appendix A is plotted in Fig. 6. It can he seen 
that the correction is small, except for small 
Re and Pr. 

It is obvious that 

and 

@a) 

T nv Tat. - Ta T8 
f" 

= --‘fan.-. f t*. (Jb) 

On the basis of the velocity defect faw for 
smooth pipes (UaV - V/a*) is taken as a constant 
independent of Reynolds or Prandtl number, 
while (V,/u*) is a function of Reynolds number. 
By definition 

In [7], the value of (U,, - U~~~*) was taken 
as 10.3, and the value of (o&*) was determined 
from experimental C.p values. It was found that 

V8 
u* 

= 5#25 loglo 10-s Re (5) 

gave a good fit. The resulting expression, 

‘f = HO-3 + 5.25 log10 lie x 10-31-s 
2 

(6) 

is as good as any of the generally accepted 
formulae for smooth pipes. 

It is assumed that where the defect law is 
valid, i.e. outside the sublayer, the temperature 
distribution is related to the velocity distribution 
by 
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The assumption of similarity of the velocity and and for simplicity it is assumed that 
temperature defect profiles then gives 68 = ES m IL’ (14) 

Re Pr z/(G/2) 
NU = 163.4 + (7-,/t*)’ 

(8) Then integration of (12) gives 

The proportionality factor, A, can be interpreted 
IJ&” 

as a total Prandtl number and evaluated from r, 1 + [a (w*)14 l!J ~ =pr _-- 

values at the center of the pipe by the expression t* s l+Pr[a(U/~*)l4~u*’ (“)’ 
0 

A = !??<t This integral can be evaluated by standard 
h methods to give 

Re* + Re 14Cd2) 
= ” &‘fhI$J Pr Re z/(C’/2) 

T, ~- = 2 [l + P - 1) W)l t* (16) 

f?i Re d(Cf12) + Re* 
(9) 

where 
= Tc %?2/0 + (E; Re*l$ Pr) 

U8 
where Re* = (2rou*/cL) should be between X = a Prli4 ;G = 213 Pr 1’410gl~ Re x IO-3 (17a) 

40-50 [ll]. . 
,,., 

It can be seen that unless Pr is very small, A is and 
close to E;/E; and that the exact value of Re* 
will only be important in the liquid metal 
range. 

4(X) = &2) 

In [l] it was assumed that 

(10) 
Figure 1 shows # 

This assumption is equivalent to neglecting 
turbulent transport in the sublayer. For large 
Pr where 10.3 A can be neglected, it results in 

NM = _El/(Cf12) 
1 - lam!) (11) 

which is independent of Pr. This contradicts 
most of the available experimental data which 
has been summarized by Deissler [2] but is in 
agreement with the views and data of Frank- 
Kamenetskii [3]. 

The present analysis of the laminar sublayer 
is based on Spalding’s recent idea of using the 
velocity as the independent variable. Because 
the sublayer is thin, the relation 

can be used. Spalding suggests 

+ 2 tan-l i2;i . (17b) 

X) as a function of X. It can 
be seen that for X < l/2, equation (10) is a 
valid approximation. Also, for Pr close to 1, 
equation (10) will be accurate even though X is 
large. On the other hand, for X > 3, 

Figure 2 shows lines of constant X in the Re-Pr 
plane. 

The final expression, therefore, is 

NU = j@Y3 + (U#;:lo.3 A + (18) 

(U&*) 11 + (Pr - 1) C(X)1 > 

where 

U,/u* is given by equation (5) 
is given by equation (9) 

t(X) is given by equation (17). 

t It is at this point that the assumption of equal 
thicknesses enters. 
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FIG. 1. Plot of 4(X) and approximate expression for large X. 

FIG. 2. Contours of equal X in Reynolds num~r-~~dtl number plane. 

SPECIFIC RESULTS For large Fr, equation (18) can be approxi- 
Equation (18) contains three constants : mated by 

Re*, (E;/ E;) and a which have to be evaluated. Re pr l/(GP) 
Fortunately, there are three regions in which a 

II- 
NU = Pr (~~~~*) #2(X) Pa) 

different c&&ant predominates. For very large 
.“. _. 

Pr only a is important, at Pr N 1 f it is $1~: 
and since X is also large, this becomes 

which dominates, and in the liquid metal range 
Re* controls, 

Nu = ‘f Re I’+4 y’(Cf> WW 
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This is exactly the result obtained by Deissler 
(equation (32) of [2]), so a can be taken as l/8. 
While it was to be expected that the present 
analysis would give the same functional depen- 
dence of Nu on Re, Pr and Cf, the identity of 
the proportionality constant is noteworthy. 
Because of this identity, the agreement with the 
experimental data (excluding Frank-Kamenet- 
skii’s) at large Pr will be very good, as shown 
by Fig. 4 of reference 2. 

It appeared originally that they theory could 
account for Frank-Kamenetskii’s results as a 
Reynolds number effect, since his measurements 
were made for Re < 104. However, his results 
differ markedly from the present analysis and 

I 1 

0.2 I I I I II1 
0.6 I.0 2 4 6 6 IO-O 

Pr 

FIG. 3. Comparison of theory and experiment for 
moderate Prandtl numbers at a Reynolds number of 

15 x 105. Experimental values from [13]. 
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Nu 
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1’ 
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FIG. 4. Comparison of theory and empirical expressions 
for the liquid metal range. 

all the generally accepted theoretical and 
empirical expression, so that there must be some 
unexplained error involved. 

For Pr = 1, the effect of a cancels out and 
Re* has a very minor effect, In [I] the value 
of ($Jc;) was taken as 0.85. This value was 
based on the value of (Cf/2G) at Re = 1.5 x 105 
and Pr = 0.72 of 0.85 cited by Hastrup [13 1. 
According to the analysis used in [l], this 
ratio did not change appreciably with Pr 
between 0.72 and 1.0. With the present analysis 
taking A = 1.0 gives good agreement with both 
Hastrup’s value and more recent experimental 
results in this range reported by Dipprey and 
Sabersky [13], as shown in Fig. 3. Furthermore, 
with this value A also approaches 1 in this 
range, which is in better agreement with the 
experimental temperature traverses. 

In the liquid metal range X is small so the 
analysis of [l] is valid. However NU was calcu- 
lated using the complete new expressions. The 
value of a = l/8 and c;/c; = 1 were used, 
though these values have little effect in the 
liquid metal range. The value of Re* was 
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FIG. 5’. Plot of 2C& versus Reynolds number for 
different Prandtl numbers. 
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FIG. 6. Plot of correction factor (Tav/Tb. ..) vs Reynolds number for different Prandtl numbers. 

taken as 50. It is well known that in the liquid 
metal range to a high degree of precision NU is a 
function of the Peclet number (- Re x Pr). 
The plot of our results in Fig. 4 shows that this 
is the case. The empirical relations 

NU = 4.5 + O-014 Pea’5 

due to Mikheev [14] and 

@a) 

Nu = 0625 Pe2’” (2Ob) 

due to Lubarsky and Kaufman [15] are shown 
for comparison. These empirical expressions 
have been used instead of the experimental data, 
because of the large amount of scatter in the 
data and because Mikheev’s data, which is the 
largest consistent set, has only been published 
as a small curve. 

In Fig. 5, the values of 2(C&f) over the 
entire range of Re and Pr are shown. From this 
and Fig. 1, values of NU or Ch can be obtained. 
By using Fig. 6, the result can be corrected to a 
bulk average temperature. 

CONCLUSIONS AND PLANS FOR FUTURE WORK 

The present analysis gives heat- (and mass-) 
transfer coefficients in reasonably good agree- 

ment with experiment over the entire Prandtl 
(and Schmidt) number range. As there are 
numerous analyses which will work for part 
of the range, and two other analyses [5, 61 
which also cover the entire range of Prandtl 
numbers, this is not a revolutionary achieve- 
ment. However, the present analysis appears 
much simpler than those commonly used, 
because it does not involve the evaluation of 
velocity gradients, i.e. it is an integral rather 
than a differential approach. 

This paper has dealt with the constant flux 
fully developed case for a tluid with constant 
properties flowing in a smooth circular pipe. In 
future work, it is hoped to remove these restric- 
tions and deal with more general problems. 
In particular, the problem of the effect of 
roughness is of considerable interest at present. 
Since the defect law is applicable to the velocity 
distribution in rough pipes, only a modification 
of the sublayer analysis is needed to make the 
analysis applicable. 

APPENDIX A 

An approximate calculation of Tav/Ta. rtv is 
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presented, based on the defect laws and neg- 
lecting the sublayer. By definition 

T a” 

Tb. av 
641) 

where q = (r/r#. This can be rewritten as 

T a” I_ z 
Tb. av 

IT, s Tc - T 
--t*dv t* 

0 0 
1 

____-~- (A2) 
a 

TC Tc - T -- _ ___ 
t* t* >( 

0 

By assuming 

yr =f(d (A34 5. 

Tc - T 
~-- = Af(7) 

t* (A3b) 

over the entire cross section equation (A2) 
becomes 

T a” __ zzz 
Tb. av 

By Prandtl’s rule 
(A4) 

aj-dY = !k$!? = D = 4.07 (A5) 

In order to evaluate jf2 dv an approximation 
0 

~VsY = 30 [l - 2/(1 - ?l)] (A6) 

derived in [7] is used. This gives 

$f2ds =3/2D2 (A7) 
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Therefore, the value of (Tav/Tb. Bv) can be 
computed as a function of Re and Pr by using 
the expressions for A, Us/u*, and (Ts/t*) given 
in the paper. The results are shown in Fig. 6. 
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RCume-Une analyse du transport turbulent de chaleur et de masse est basee sur les lois de differences 
de vitesse et de temperature darts la partie centrale et combinee avec une analyse de la sous-couche 
limite oti la vitesse est prise comme variable independante. Les calcues sont en accord satisfaisant 
avec les experiences sur toute la gamme de nombres de Prandtl (ou de Schmidt) allant de lo-:’ a 
103, sauf pour quelques rtsultats discordants de Frank-Kamenetskii qui sont gtnkralement ignorks. 

Zusammenfassung-Die Analysis des turbulenten Warme- und Stofftransports wird auf Gesetze der 
Geschwindigkeits- und Temperaturdefekts im mittleren A.bschnitt zuriickgefiihrt in Verbindung mit 
einer Unterschichtanalysis, wobei die Geschwindigkeit als unabhangige Variable dient. Die Berech- 
nungen zeigen zufriedenstellende Ubereinstimmung mit Versuchen im gesamten Bereich der 
Prandtl- (oder Schmidt-) Zahl von 1O-3 bis 103, ausser einigen abweichenden Ergebnissen nach Frank- 

Kamenetskii, die gewohnlich unberiicksichtigt bleiben. 

AHHOTB~~SI-II~OB~~MTCH auaau3 TypFyne~~uoro T~IIJIO-LI kfaCConepewCa ua OCHOH~: 

3aHOHOB HeHOCTaTKOB CIEOpOCTH II TeMnepaTypbI KaK B RApe TeqeHkIJZ, TaK H B IIOnCJIOe, rfie 

B HaYeCTBe He3aBHCHMOti IIepeMeHHOtl HCnOJIb3yeTCR BeJIWlIlHa CKOpOCTM. PaCqeTbI XOpOIIlO 

COrJIaCyEOTCn C pe3yJIbTaTaMR OnbITOB BO BCeM JJHana3OHe YHCeJI npaHnTJIR (WI NMHnTa) 

OT 1W3 ~0 lo*. IIMeeTcn uenoropoe pacxo2n~eane c peaynbTaTaw4 @pawa-KaMenenI<oro. 


